skip to main content


Search for: All records

Creators/Authors contains: "Mao, Yunxiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a Hierarchical Convolution Neural Network (HCNN) for mitosis event detection in time-lapse phase contrast microscopy. Our method contains two stages: first,we extract candidate spatial-temporal patch sequences in the input image sequences which potentially contain mitosis events. Then,we identify if each patch sequence contains mitosis event or not using a hieratical convolutional neural network. In the experiments,we validate the design of our proposed architecture and evaluate the mitosis event detection performance. Our method achieves 99.1% precision and 97.2% recall in very challenging image sequences of multipolar-shaped C3H10T1/2 mesenchymal stem cells and outperforms other state-of-the-art methods. Furthermore,the proposed method does not depend on hand-crafted feature design or cell tracking. It can be straightforwardly adapted to event detection of other different cell types. 
    more » « less
  2. The number of Circulating Tumor Cells (CTCs) in blood indicates the tumor response to chemotherapeutic agents and disease progression. In early cancer diagnosis and treatment monitoring routine, detection and enumeration of CTCs in clinical blood samples have significant applications. In this paper, we design a Deep Convolutional Neural Network (DCNN) with automatically learned features for image-based CTC detection. We also present an effective training methodology which finds the most representative training samples to define the classification boundary between positive and negative samples. In the experiment, we compare the performance of auto-learned feature from DCNN and hand-crafted features, in which the DCNN outperforms hand-crafted feature. We also prove that the proposed training methodology is effective in improving the performance of DCNN classifiers. 
    more » « less